

Welcome to pyflight’s documentation!

Contents:

	API Reference
	Basic Configuration

	Making Requests

	Working with the Response

Indices and tables

	Index

	Module Index

	Search Page

API Reference

This page shows the functions and classes exposed by pyflight.
A lot of attributes wrap the required parameters for the QPX API and thus result in documentation similiar to the one
found on the official QPX Express API reference [https://developers.google.com/qpx-express/v1/trips/search], licensed
under the Creative Commons Attribution 3.0 License [https://creativecommons.org/licenses/by/3.0/].

Basic Configuration

	
pyflight.set_api_key(key: str)

	Set the API key to use with the API.

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The API key to execute requests with.

Making Requests

	
class pyflight.Request

	Represents a Request that can be sent to the API instead
of using a dictionary manually.

Please note that each Request requires at least
1 adult or senior passenger.
Optional attributes default to None.

	
raw_data

	dict – The raw JSON / dictionary data which will be sent to the API.

	
adult_count

	int – The amount of passengers that are adults.

	
children_count

	int – The amount of passengers that are children.

	
infant_in_lap_count

	int – The amount of passengers that are infants
travelling in the lap of an adult.

	
infant_in_seat_count

	int – The amount of passengers that are infants assigned a seat.

	
senior_count

	int – The amount of passengers that are senior citizens.

	
max_price

	Optional[str] – The maximum price below which results should be returned.
The currency is specified in ISO-4217, and setting
this attribute is validated using the regex [A-Z]{3}\d+(\.\d+)?.
If it does not match, a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised.

	
sale_country

	Optional[str] – The IATA country code representing the point of sale.
Determines the currency.

	
ticketing_country

	Optional[str] – The IATA country code representing the point of ticketing,
for example DE.

	
refundable

	Optional[bool] – Whether to return only results with refundable fares or not.

	
solution_count

	int – The amount of solutions to return. Defaults to 1, maximum is 500.
Raises a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] when trying to
assign a value outside of 1 to 500.

	
add_slice(slice_: pyflight.requester.Slice)

	Adds a slice to this Request.

	Parameters

	slice (Slice) – The Slice to be added to the request.

	Returns

	To ease chaining of this function, self is returned.

	Return type

	self

	
as_dict() → dict

	Returns the raw data associated with this request,
which is sent to the API when calling send_sync or send_async.

	
send_sync(use_containers: bool = True) → typing.Union[pyflight.result.Result, dict]

	Synchronously execute a request.

Internally, this calls pyflight.send_sync().
You can also call the function directly.
For further information, please view
documentation for pyflight.send_sync().

	
send_async(use_containers: bool = True) → typing.Union[pyflight.result.Result, dict]

	Asynchronously execute a request.

Internally, this calls pyflight.send_async().
You can also call the function directly. For further information,
please view documentation for pyflight.send_async().

	
adult_count

	The amount of passengers that are adults.

	
children_count

	The amount of passengers that are children.

	
infant_in_lap_count

	The amount of passengers that are infants
travelling in the lap of an adult.

	
infant_in_seat_count

	The amount of passengers that are infants assigned a seat.

	
senior_count

	The amount of passengers that are senior citizens.

	
max_price

	The maximum price below which results should be returned,
specified in ISO-421 format.

	
sale_country

	The IATA country code representing the point of sale.
Determines the currency.

	
ticketing_country

	The IATA country code representing the point of ticketing,
for example DE.

	
refundable

	Whether to return only results with refundable fares or not.

	
solution_count

	The amount of solutions to return. Defaults to 1.

	
class pyflight.Slice(origin: str, destination: str, date: str)

	Represents a slice that makes up a single itinerary of this trip.

For example, for one-way trips, usually one slice is used.
A round trip would use two slices. (e.g. SFO - FRA - SFO)

Optional attributes default to None or an empty list if applicable,
but can be set if wanted.

	
raw_data

	dict – The raw JSON / dictionary data which will be sent to the API.

	
origin

	str – The airport or city IATA designator of the origin.

	
destination

	str – The airport or city IATA designator of the destination.

	
date

	str – The date on which this flight should take place,
in the format YYYY-MM-DD.

	
max_stops

	Optional[int] – The maximum amount of stops that the passenger(s)
are willing to accept on this slice.

	
max_connection_duration

	Optional[int] – The longest duration (in minutes) between two legs
that passengers are willing to accept

	
preferred_cabin

	Optional[str] – The preferred cabin for this slice.
Allowed values are COACH, PREMIUM_COACH, BUSINESS, and FIRST.
A ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised if a value is assigned that is
not listed above.

	
earliest_departure_time

	Optional[str] – The earliest time for departure, local to the point of departure.
Formatted as HH:MM.

	
latest_departure_time

	Optional[str] – The latest time for departure, local to the point of departure.
Formatted as HH:MM.

	
permitted_carriers

	List[str] – A list of 2-letter IATA airline designators for
which results should be returned.

	
prohibited_carriers

	List[str] – A list of 2-letter IATA airline designators,
for which no results will be returned.

	
origin

	The airport or city IATA designator of the origin.

	
destination

	The airport or city IATA designator of the destination.

	
date

	The date on which this flight should take place,
in the format YYYY-MM-DD.

	
max_stops

	The maximum amount of stops that the passenger(s)
are willing to accept on this slice.

	
max_connection_duration

	The longest duration (in minutes) between two legs
that passengers are willing to accept

	
preferred_cabin

	The preferred cabin for this slice.
Allowed values are COACH, PREMIUM_COACH, BUSINESS, and FIRST.
A ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised if a value is assigned that is
not listed above.

	
earliest_departure_time

	The earliest time for departure, local to the point of departure.
Formatted as HH:MM.

	
latest_departure_time

	The latest time for departure, local to the point of departure.
Formatted as HH:MM.

	
permitted_carriers

	A list of 2-letter IATA airline designators for
which results should be returned.

	
prohibited_carriers

	A list of 2-letter IATA airline designators,

for which no results will be returned.

	
pyflight.send_async(request_body: typing.Union[dict, pyflight.requester.Request], use_containers: bool = True)

	
	Asynchronously execute and send a JSON Request or a Request.

	This is a coroutine - calling this function must be awaited.

	Parameters

	
	request_body (Union[dict [https://docs.python.org/3/library/stdtypes.html#dict], Request]) – The body of the request to be sent to the API.
This must follow the structure described here:
https://developers.google.com/qpx-express/v1/trips/search
It is heavily recommended to use Request instead
of constructing request bodies manually.

	use_containers (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) – Whether the containers given should be used or not.
If False is given, any API call will return a dictionary
of the “raw” API data without any modification. Otherwise, an
API call will return a Result object.

	Raises

	APIException – If the API call did not return the normal 200
status code and thus, an error occurred.

	Returns

	
	Result – If use_containers is True and no Error occurred.

	dict – If use_containers is False,
as a raw dictionary without any adjustments.

	
pyflight.send_sync(request_body: typing.Union[dict, pyflight.requester.Request], use_containers: bool = True)

	Synchronously execute and send a JSON-Request or a :class:`Request.
Note that this function is blocking.

	Parameters

	
	request_body (Union[dict [https://docs.python.org/3/library/stdtypes.html#dict], Request]) – The body of the request to be sent to the API.
This must follow the structure described here:
https://developers.google.com/qpx-express/v1/trips/search
It is heavily recommended to use Request instead
of constructing request bodies manually.

	use_containers (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) – Whether the containers given should be used or not.
If False is given, any API call will return a dictionary
of the “raw” API data without any modification. Otherwise,
the API call will return a Result object.

	Raises

	APIException – If the API call did not return the normal 200
status code and thus, an error occurred.

	Returns

	
	Result – If use_containers is True and no Error occurred.

	dict – If use_containers is ``False`, as a
raw dictionary without any adjustments.

	
class pyflight.APIException(code: int, message: str, reason: str, *args, **kwargs)

	Custom Exception that is raised from the Requests when an
API call goes wrong, meaning the API did not

return a status code of 200.

	
code

	int – The code of the Error that was returned

	
message

	str – The error message as returned by the API

	
reason

	str – The reason as specified by the API

Examples

try:
 flight_info = send_sync(my_request_body, use_containers=False)
except pyflight.APIException as err:
 print('Error trying to execute a request:')
 print(err)
else:
 ...

The Exception will be formatted as:
‘<status-code>: <error-message> (reason)’, for example
400: Bad Request (keyInvalid)

Working with the Response

Index

 A
 | C
 | D
 | E
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T

A

 	
 	add_slice() (pyflight.Request method)

 	adult_count (pyflight.Request attribute), [1]

 	
 	APIException (class in pyflight)

 	as_dict() (pyflight.Request method)

C

 	
 	children_count (pyflight.Request attribute), [1]

 	
 	code (pyflight.APIException attribute)

D

 	
 	date (pyflight.Slice attribute), [1]

 	
 	destination (pyflight.Slice attribute), [1]

E

 	
 	earliest_departure_time (pyflight.Slice attribute), [1]

I

 	
 	infant_in_lap_count (pyflight.Request attribute), [1]

 	
 	infant_in_seat_count (pyflight.Request attribute), [1]

L

 	
 	latest_departure_time (pyflight.Slice attribute), [1]

M

 	
 	max_connection_duration (pyflight.Slice attribute), [1]

 	max_price (pyflight.Request attribute), [1]

 	
 	max_stops (pyflight.Slice attribute), [1]

 	message (pyflight.APIException attribute)

O

 	
 	origin (pyflight.Slice attribute), [1]

P

 	
 	permitted_carriers (pyflight.Slice attribute), [1]

 	
 	preferred_cabin (pyflight.Slice attribute), [1]

 	prohibited_carriers (pyflight.Slice attribute), [1]

R

 	
 	raw_data (pyflight.Request attribute)

 	(pyflight.Slice attribute)

 	
 	reason (pyflight.APIException attribute)

 	refundable (pyflight.Request attribute), [1]

 	Request (class in pyflight)

S

 	
 	sale_country (pyflight.Request attribute), [1]

 	send_async() (in module pyflight)

 	(pyflight.Request method)

 	send_sync() (in module pyflight)

 	(pyflight.Request method)

 	
 	senior_count (pyflight.Request attribute), [1]

 	set_api_key() (in module pyflight)

 	Slice (class in pyflight)

 	solution_count (pyflight.Request attribute), [1]

T

 	
 	ticketing_country (pyflight.Request attribute), [1]

 nav.xhtml

 Table of Contents

 		
 Welcome to pyflight’s documentation!

 		
 API Reference

 		
 Basic Configuration

 		
 Making Requests

 		
 Working with the Response

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

